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Polymer Compatibility by Continuous Thermo- 
dynamics 

MARGIT T. RATZSCH, HORST KEHLEN, and DETLEF THIEME 

Chemistry Department 
"Carl Schorlemmer" Technical University 
DDR-4200 Merseburg, German Democratic Republic 

A B S T R A C T  

By applying a continuous distribution function instead of the mole 
fractions, mass  fractions, etc. of individual components, continu- 
ous thermodynamics permits a drast ic  reduction of the computa- 
tional expense for calculating phase equilibria in complex multi- 
component systems such as petroleum fractions, shale oils, poly- 
m e r  solutions, and polymer mixtures. In this paper,  continuous 
thermodynamics is applied to compatibility in mixtures of two 
polymers. If, e.g., the cloud-point curve is known, the shadow 
curve,  the spinodal, the critical mixing point, and other interesting 
quantities may easily be calculated. Some examples are given to 
illustrate the method. 

I N T R O D U C T I O N  

Owing to the very large number of different species present,  the 
characterization of the composition of synthetic polymers on the basis  
of the true polymer species is impractical. Thus, for thermodynamic 
treatment, ei ther a number of neighboring species is united to form a 
pseudocomponent o r  a continuous distribution function may be used to 
describe the composition. The la t ter  method, called continuous thermo- 

811 
Copyright 0 1986 hy Marcel Dekker. Inc. 002?-233X/86/2307-08 I 1$3 Sol0 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
0
0
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



812 RATZSCH, KEHLEN, AND THIEME 

dynamics, was established by Kehlen and Rtitzsch [l] and later by 
Gualtieri e t  al. [ 2 ] ,  Salacuse and Stell [3] ,  and Briano and Glandt [ 4 ] ,  
In comparison to the pseudocomponent method, the main advantages 
of continuous thermodynamics are a very compact mathematical de- 
scription, a reduction of the computer time by a factor of approximate- 
l y  30, and many fewer convergence problems. 

Continuous thermodynamics is a useful method for all mixtures 
containing a large number of very similar chemical species. Applica- 
tion to the phase equilibria of systems with homopolymers o r  statisti- 
cal  copolymers has  been presented by some of the present authors 
[5-71. In this paper the problem of polymer compatibility in mixtures 
of two polymers wi l l  be dealt with. 

P H A S E  E Q U I L I B R I U M  

Consider a system of two polymers, B and C. In traditional ther- 
modynamics the condition for equilibrium between two phases, 
may be expressed by their chemical potentials in the well-known 
manner: 

and ", 

These relations must be valid for all individual species ( o r  for all 
pseudocomponents) i of the Polymer B and correspondingly for all 
individual species (or  for all pseudocomponents) j of the Polymer C. 

In  continuous thermodynamics the phase equilibrium condition 
reads 

This means that the polymers a re  considered as continuous ensembles 
of species in the continuous treatment. Of course, the amount of each 
continuous species is infinitely small. The continuous species are 
characterized by a continuous variable M o r  N which may be the molar 
mass, the degree of polymerization, the number of segments, etc. (Of 
course, we may choose M = N, but we a r e  not forced to do so.) Rela- 
tions (2 )  must be valid for the total ranges of the M-values-from M o  
up to MO-and N-values-N up to NO-, respectively. 0 
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POLYMER COMPATIBILITY 813 

To  apply Relations (21, we need expressions for  the continuous 
versions of the chemical potentials. These may be obtained from 
the corresponding expressions in traditional thermodynamics as 
shown previously [5, 61. For  Polymer B we obtain 

r g ( M )  
p B ( M )  = P ~ , ~ * ( M , T , P )  + RT (M)  + 1 - - 

r - 1  n 

+ rB(M)RT In TB(M). ( 3 )  

The relation for Polymer C reads analogously; i t  may easily be ob- 
tained by replacing B by C and M by N. 

In Eq. ( 3 )  the f i rs t  term on the right-hand side is a standard 
potential independent of the composition. The second t e r m  is the 
well-known Flory-Huggins contribution. Here,  @B is the total seg- 

ment fraction of Polymer B in the mixture, and W (M)  is the distri-  
bution function of this polymer. Its definition reads: QBWB( M)dM 

is the segment fraction of all  B-species with M-values between M 
and M + dM. Thus, the distribution function obeys the normaliza- 
tion condition 

B 

I.1",' wB( M)dM = 1. 

The quantity r ( M )  is the segment number of the species indi- B 
cated, and 7 i s  the corresponding number average: 

n,B 

( 4 )  

The third t e rm in E_q. ( 3 )  containing the so-called segment molar 
activity coefficient TB( M) describes the excess with respect to a 
Flory-Huggins mixture. 

symbol Yn signifies the number-average segment number for  the total 
mixture 

The quantities referr ing to Polymer C are defined analogously. The 
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814 RATZSCH, KEHLEN, AND THIEME 

For  applications, the segment molar activity coefficients TB (M) and 
- 

Tc(N) may be calculated by using current  model theories such as 
Huggins' x -parameter concept or the Flory-Orwoll- Vrij theory. 
In this paper a l inear dependence of the Huggins' X-parameter 
with respect to QB and 1/T is assumed to follow 

Here cE is the deviation of Gibbs energy from i t s  value for a Flory- 
Huggins mixture considered for a mole of segments. Relation ( 7 )  con- 
tains three adjustable parameters  a, b, c. It is a relatively simple expres- 

sion because cE does not depend on the distribution functions WB(M) 

and W (N). A s  long as we consider polymers and not oligomers, this C 
indspendence is a good approximation. It resul ts  in the independence 
of ? and yc from M and N, respectively [ 5, 61, and we obtain B 

C L O U D - P O I N T  C U R V E  AND SHADOW C U R V E  

In considering polymer compatibility, we are interested in the 
cloud-point curve and the shadow curve. The cloud-point curve de- 
scr ibes  the temperature of the beginning of phase separation as a 
function of the composition Q of a phase ' with given Polymers B 
and C characterized by their  distribution functions WB' ( M )  and 
Wc' ( N b  The shadow curve provides the composition QB" of the 

first droplets formed for  the new phase l'. 

Introducing Eq. ( 3 )  and the corresponding expression for Polymer 
C into the phase equilibrium condition (2),  we obtain, af ter  rearranging, 

B 
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POLYMER COMPATIBILITY 81 5 

with 

The resulting expressions for  W " ( N )  and pc read analogously. Ac- 

cording to Eq. ( 4 ) ,  integration leads to 
C 

M 0  
$," =JM $B'WB' (M)exp [p , r~ (M)]dM,  

1 - sliB'' =JN ( 1  - 9,' )wc' (N)  exp [pcrC(N)]dN. 

(11) 
0 

NO 
( 12) 

0 

In these two equations, three unknowns occur: T ,  $,I1, and Fntr. Thus,  

completing Eqs. (11) and ( 1 2 )  by the relation 

resulting from Eqs. ( 5) and (6), we obtain a system of three equations 
fo r  the three unknown quantities. If T, $BT', and ?nql are calculated in 

this way, the unknown distribution functions WB" ( M )  and WC" (N)  are 
immediately given by Eq. ( 9 )  and the analogous relation for  Polymer C. 

In the general case, the integrals in Eqs. (11)-( 13) must be calcu- 
lated by numerical methods. But, on the assumption that Schulz-Flory 
distributions are suitable for  describing the distribution functions in 
the given phase , i.e., the expression 
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816 RATZSCH, KEHLEN, AND THIEME 

and an analogous relation for Wcl ( r  ) are applicable, all integrals 
occurring may be calculated analytically. In (14), we simply have 
chosen M = rB(M). The parameters  of ( 14) are F 
means the r-function. For  this case,  the analytical solution of the 
integrals in Eqs. ( 11)- ( 13) leads to the following expressions: 

C 

and kB; I' 
n,B 

( 17) 

Relations ( 15)-f 17) permit the elimination of Fn" and T. Thus,  there  
remains only one (implicit) equation with the unknown 

solution. Furthermore,  the distribution functions in phase prove to 
be the Schulz- Flory distributions too. 

for numeric 

S P I N O D A L  A N D  C R I T I C A L  P O I N T  

= E  If G does not depend on the distribution functions WB(  M )  and 

WC(N), such a s  in Eq. ( 7 ) ,  continuous thermodynamics leads to the 

following relation for  the spinodal [8] : 

= 0. (18) 
1 1 

+ - 
( 1  - $*)TW,$ 

T , P  
J/B%,B 

The crit ical  mixing point is characterized by the additional validity 
of the equation [8] : 
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POLYMER COMPATIBILITY 817 

In Eqs. (18) and (19), Tw and FZ indicate the weight-average and the 
z-average. Relations (18) and (19) have also been extablished on the 
basis of traditional thermodynamics [ 91. 

E X  A M P L E  S 

A s  examples, we will consider some polymer blends known from 
the literature [lo-131 : three different systems of polystyrene + poly- 
(vinyl methyl ether) (Figs. 1-3) showing lower critical solution tem- 

0 0.5 1 
mass fraction polystyrene 

v 

FIG. 1. A polystyrene + poly(viny1 methyl ether) blend: Experi- 
mental cloud points (+ ) and fitted cloud-point curve (-). Com- 
parison of experimental (-+- ) and predicted (--) spinodal and of 
experimental ( n )  and predicted (.) critical point. 
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818 RATZSCH, KEHLEN, AND THIEME 

T 
K 
- 

LOO 

360 

0 0.5 1 
mass fraction polystyrene 

P 

FIG. 2. A polystyrene + poly(viny1 methyl ether) blend: Experi- 
mental (-) and fitted (-1 cloud-point curve. Comparison of experi- 
mental line of demarcation between phase separation morphologies 
(- -) and predicted spinodal (- -) and of experimental ( ) and pre- 
dicted ( H )  critical point. 

perature behavior and one system of polystyrene + poly( methylphenyl- 
siloxane) (Fig. 4 )  with an upper critical solution temperature. In all 
cases the polymers can be characterized by Schulz- Flory distribu- 
tions, leading to the applicability of the simpler formulas (15)-( 17). 
The Schulz-Flory parameters rn  and k for the polymers a re  listed in 

= E  Table 1, together with the parameters a ,  b, c introduced by the G - 
expression (Eq. 7). The latter parameters were obtained by fitting to 
the experimental cloud-point curve data. The good reproduction of 
the experimental cloud points by the calculated curve shows the ap- 

= E  plicability of the model Expression ( 7 )  for G . 
In the case of Fig. 1, Synder and Meakin [ l o ]  published not 

only experimental cloud points but also experimental spinodal data,. 
Hence, the predicted spinodal curve and the predicted critical point 
can be compared to experimental data. Figure 1 shows that the ex- 
perimental values a re  well  predicted. 
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POLYMER COMPATIBILITY 819 

‘i K 

380- 
I 
0 0.5 1 

mass fraction polystyrene - 
FIG. 3. A polystyrene + poly(viny1 methyl e ther)  blend: Experi- 

mental cloud points ( A ?  heating; v ? cooling) and fitted cloud-point 
curve (- ). Predicted shadow curve ( -  . )?  predicted spinodal ( -  - ), 
and predicted cri t ical  point ( ). 

For the system of Fig. 2,  Nishi, Wang, and Kwei 1111 reported, in 
addition to the experimental cloud points, experimental data on the line 
of demarcation between phase separation morphologies. A s  this line 
should be very near  the spinodal, a comparison analogous to that in 
Fig. 1 shows a good prediction of the experimental data. 

McMaster [ 121 (Fig. 3)  gives experimental data only on the cloud- 

dicted data is possible. Here, the predicted shadow curve is also 
plotted. 

Nearly the same holds in the case of Fig. 4 based on data by 
Nojima and Nose [13]. The predicted shadow curve and the pre- 
dicted spinodal were plotted. 
permitting a comparison between experiment and prediction is the 
cri t ical  point, but in this case the agreement is not as good as in 
Figs. 1 and 2. 

The only experimental information 
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I 
I 

- 0  0.5 1 
mass fraction polystyrene - 

FIG. 4. A polystyrene + poly (methylphenylsiloxane) blend: Experi- 
mental cloud points (+) and fitted cloud-point curve (-). Predicted 
shadow curve ( - a )  and predicted spinodal (--). Comparison of experi- 
mental ( ) and predicted ( ) critical point. 
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